Backstepping Adaptive Neural Network Control for Electric Braking Systems of Aircrafts

Author:

Zhang ,Lin

Abstract

This paper proposes an adaptive backstepping control algorithm for electric braking systems with electromechanical actuators (EMAs). First, the ideal mathematical model of the EMA is established, and the nonlinear factors are analyzed, such as the deformation of the reduction gear. Subsequently, the actual mathematical model of the EMA is rebuilt by combining the ideal model and the nonlinear factors. To realize high performance braking pressure control, the backstepping control method is adopted to address the mismatched uncertainties in the electric braking system, and a radial basis function (RBF) neural network is established to estimate the nonlinear functions in the control system. The experimental results indicate that the proposed braking pressure control strategy can improve the servo performance of the electric braking system. In addition, the hardware-in-loop (HIL) experimental results show that the proposed EMA controller can satisfy the requirements of the aircraft antilock braking systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wheel slip ratio control considering time delay characteristic for electro-mechanical braking system;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-03-26

2. Adaptive Optimal Control of UAV Brake Based on Parameter Estimation;Applied Sciences;2023-10-30

3. PSO Optimized Active Disturbance Rejection Control for Aircraft Anti-Skid Braking System;Algorithms;2022-05-10

4. Research on information transmission system of fire fighting UAV;2021 2nd International Conference on Computing, Networks and Internet of Things (CNIOT 2021);2021-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3