Lotus (Nelumbo nucifera Gaertn.) Leaf-Fermentation Supernatant Inhibits Adipogenesis in 3T3-L1 Preadipocytes and Suppresses Obesity in High-Fat Diet-Induced Obese Rats

Author:

He Yao,Tao Yue,Qiu Liang,Xu Wenfeng,Huang Xiaoli,Wei Hua,Tao Xueying

Abstract

The lotus (Nelumbo nucifera Gaertn.) leaf is a typical homologous ingredient of medicine and food with lipid-lowering and weight-loss effects. In the present study, lotus leaves were fermented by two probiotics, Enterococcus faecium WEFA23 and Enterococcus hirae WEHI01, and the anti-adipogenic effect of Enterococcus fermented lotus leaf supernatant (FLLS) was evaluated in 3T3-L1 preadipocytes with the aim of exploring whether its anti-obesity ability will be enhanced after fermentation with Enterococcus and to dig out the potential corresponding mechanism. The FLLS fermented by E. hirae WEHI01 (FLLS-WEHI01) was selected and further investigated for its ability to inhibit obesity in vivo in high-fat diet (HFD)-induced obese rats (male, 110 ± 5 g, 4 weeks old) due to its superior inhibitory effect on adipogenesis and lipid accumulation (inhibition rate of up to 56.17%) in 3T3-L1 cells (p = 0.008 for WEHI01-L, p < 0.001 for WEHI01-H). We found that the oral administration of both the low and high doses of FLLS-WEHI01 could achieve some effects, namely decreasing body weight (p < 0.001), epididymal fat mass, adipocyte cell size, LDL-C levels (p = 0.89, 0.02, respectively), liver TC levels (p < 0.001, p = 0.01, respectively), and TG levels (p = 0.2137, p = 0.0464, respectively), fasting blood glucose (p = 0.1585, p = 0.0009), and improved insulin resistance (p = 0.33, 0.01, respectively) in rats of the model group. Moreover, the administration of both high and low doses of FLLS-WEHI01 decreased the transcription levels of adipogenic transcription factors and corresponding genes such as Pparγ (p < 0.001), Cebpα (p < 0.001), Acc (p < 0.001), and Fas (p < 0.001) by at least three times. These results indicate that FLLS-WEHI01 can potentially be developed as an healthy, anti-obesity foodstuff.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3