Experimental and Numerical Investigation of the Influence of Process Parameters in Incremental Sheet Metal Forming on Residual Stresses

Author:

Maqbool Fawad,Bambach Markus

Abstract

The aim of this study is to analyze the co-relation between the geometrical accuracy of parts formed by single-point incremental forming (SPIF) and the resulting distribution of the residual stresses induced in the material as a function of the different process parameters of the SPIF process. The study was performed for a pyramidal frustum manufactured by varying the process parameters of SPIF, i.e., tool diameter, tool step-down, and wall-angle. The hole-drilling strain gage method was used to determine the residual stresses in the manufactured pyramids. Further, small strips were laser cut from the pyramids, and the curvature of the strips was measured. The curvature of the strips is a result of the intensity and distribution of the residual stresses, which in turn depends on the selected values of the process parameters. A validated numerical model of SPIF was used to determine the residual stresses parallel and perpendicular to the direction of tool motion at the center of a strip cut from the numerical model in clamped, unclamped, and trimmed states. Further, the change in the bending moment of a strip that occurred upon unclamping and trimming was calculated. Experimental and numerical investigations reveal that the most significant parameter in residual stress build-up and the reduction of geometrical accuracy is the wall angle. Upon unclamping, the highest change in the residual stresses and bending moment occurred with the largest tool step-down and tool diameter. Upon trimming, the magnitude of the residual stresses and bending moment changed the most with the largest tool step-down in both directions, whereas the change was highest with the smallest tool diameter in the transverse direction of the tool motion. Furthermore, upon trimming, the geometric deviations were highest with the large wall angles in the transverse direction of the tool motion. Overall, the effect of changing process parameters on the residual stress state and geometrical accuracy was more pronounced in the transverse direction of the tool motion.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3