Beyond Tailpipe Emissions: Life Cycle Assessment Unravels Battery’s Carbon Footprint in Electric Vehicles

Author:

Ankathi Sharath K.1,Bouchard Jessey1ORCID,He Xin1ORCID

Affiliation:

1. Strategic Analysis Team, Aramco Research Center, Detroit, Aramco Services Company, Novi, MI 48377, USA

Abstract

While electric vehicles (EVs) offer lower life cycle greenhouse gas emissions in some regions, the concern over the greenhouse gas emissions generated during battery production is often debated. This literature review examines the true environmental trade-offs between conventional lithium-ion batteries (LIBs) and emerging technologies such as solid-state batteries (SSBs) and sodium-ion batteries (SIBs). It emphasizes the carbon-intensive nature of LIB manufacturing and explores how alternative technologies can enhance efficiency while reducing the carbon footprint. We have used a keyword search technique to review articles related to batteries and their environmental performances. The study results reveal that the greenhouse gas (GHG) emissions of battery production alone range from 10 to 394 kgCO2 eq./kWh. We identified that lithium manganese cobalt oxide and lithium nickel cobalt aluminum oxide batteries, despite their high energy density, exhibit higher GHGs (20–394 kgCO2 eq./kWh) because of the cobalt and nickel production. Lithium iron phosphate (34–246 kgCO2 eq./kWh) and sodium-ion (40–70 kgCO2 eq./kWh) batteries showed lower environmental impacts because of the abundant feedstock, emerging as a sustainable choice, especially when high energy density is not essential. This review also concludes that the GHGs of battery production are highly dependent on the regional grid carbon intensity. Batteries produced in China, for example, have higher GHGs than those produced in the United States (US) and European Union (EU). Understanding the GHGs of battery production is critical to fairly evaluating the environmental impact of battery electric vehicles.

Publisher

MDPI AG

Reference117 articles.

1. IEA (2024, March 16). Tracking Clean Energy Progress 2023, IEA, Paris. Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023.

2. IEA (2024, March 16). Global CO2 Emissions from Transport by Sub-Sector in the Net Zero Scenario, 2000–2030, IEA, Paris. Available online: https://www.iea.org/data-and-statistics/charts/global-co2-emissions-from-transport-by-sub-sector-in-the-net-zero-scenario-2000-2030-2.

3. Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles;McCollum;Nat. Energy,2018

4. The size and range effect: Lifecycle greenhouse gas emissions of electric vehicles;Ellingsen;Environ. Res. Lett.,2016

5. Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles;Hawkins;J. Ind. Ecol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3