Affiliation:
1. Shijiazhuang Campus, Army Engineering University of PLA, Shijiazhuang 050003, China
Abstract
Path planning for an unmanned vehicle in an off-road uncertain environment is important for navigation safety and efficiency. Regarding this, a global improved A* algorithm is presented. Firstly, based on remote sensing images, the artificial potential field method is used to describe the distribution of risk in the uncertain environment, and all types of ground conditions are converted into travel time costs. Additionally, the improvements of the A* algorithm include a multi-directional node search algorithm, and a new line-of-sight algorithm is designed which can search sub-nodes more accurately, while the risk factor and the passing-time cost factor are added to the cost function. Finally, three kinds of paths can be calculated, including the shortest path, the path of less risk, and the path of less time-cost. The results of the simulation show that the improved A* algorithm is suitable for the path planning of unmanned vehicles in a complex and uncertain environment. The effectiveness of the algorithm is verified by the comparison between the simulation and the actual condition verification.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献