Path-Following Control of Unmanned Vehicles Based on Optimal Preview Time Model Predictive Control

Author:

Wang Xinyu1,Ye Xiao1,Zhou Yipeng1,Li Cong1

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

In order to reduce the lateral error of path-following control of unmanned vehicles under variable curvature paths, we propose a path-following control strategy for unmanned vehicles based on optimal preview time model predictive control (OP-MPC). The strategy includes the longitudinal speed limit, the optimal preview time surface, and the model predictive control (MPC)controller. The longitudinal speed limit controls speed to prevent vehicle rollover and sideslip. The optimal preview time surface adjusts the preview time according to the vehicle speed and path curvature. The preview point determined by the preview time is used as the reference waypoint of OP-MPC controller. Finally, the effectiveness of the strategy was verified through simulation and with the real unmanned vehicle. The maximum lateral deviation obtained by the OP-MPC controller was reduced from 0.522 m to 0.145 m under the simulation compared with an MPC controller. The maximum lateral deviation obtained by the OP-MPC controller was reduced from 0.5185 m to 0.2298 m under the real unmanned vehicle compared with the MPC controller.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3