Simplified Modelling of Coupled Surface-Groundwater Transport Using a Subcatchment Mass Balance Approach

Author:

Elliott Alexander Hewgill,Rajanayaka Channa,Yang Jing

Abstract

Catchment models based on steady-state mass balances enable rapid assessment of contaminant fluxes and concentrations in rivers. However, such models often focus on surface drainage, without taking groundwater into account. This paper presents a novel steady-state mass-balance catchment model that includes groundwater. The model incorporates a conceptual reservoir under each surface subcatchment, with lateral subsurface exchanges between adjacent reservoirs and vertical exchanges between the reservoirs and the surface drainage network. This leads to an easily solved coupled algebraic system of equations. The approach is demonstrated for nitrogen in a meso-scale catchment in New Zealand. Exchange coefficients were extracted from a full groundwater model, while recharge sources were obtained from separate hydrological and leaching models. Other parameters such as decay coefficients were determined through calibration. Although the exchange coefficients are generated from a detailed groundwater model, alternatives such as simple groundwater models or phreatic contours could be used instead. The effective decay parameters were different from what was expected, which is partly due to the model structure (for example, the assumption of complete mixing in each reservoir), but may also be due to input uncertainty. The applications demonstrated the successful deployment of a novel, simple, fast-running and flexible coupled surface-groundwater model.

Funder

Ministry of Business, Innovation and Employment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3