Abstract
Projected changes in temperature and precipitation in mid-latitude wet regions are expected to significantly affect forest ecosystems. We studied the physiological and shoot growth responses of Abies holophylla and Abies koreana seedlings to warming (3 °C above ambient temperature) and increased precipitation (irrigation with 40% of rainfall) treatments under open-field conditions. The physiological parameters, quantified by the net photosynthetic rate, transpiration rate, stomatal conductance, and total chlorophyll content, were monitored from July to October 2018. Shoot growth (i.e., root collar diameter and height) was assessed in August and December 2018. Irrespective of the treatments, the physiological parameters of both species decreased from July to August under warming treatment due to heat stress before recovering in September and October. Warming alone (W) and warming along with increased precipitation (W*P) decreased the physiological activities of both species in July, August, and September, with more pronounced effects on A. koreana compared with A. holophylla. Increased precipitation resulted in the increased chlorophyll content of both species in October. Shoot growth was not generally affected by the treatments, except for a subtle reduction in height under W*P for A. koreana. A. holophylla had consistently higher values for the physiological parameters and shoot growth than A. koreana. Our results indicate that the physiological activities of the Abies species could be seriously reduced under climate change, with a more severe impact on A. koreana. Among the two species, A. holophylla appears to be a more robust candidate for future forest planting.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference82 articles.
1. Climate Change 2014: Synthesis Report,2014
2. Korea 100 Years Climate Change Report,2018
3. Biological consequences of global warming: is the signal already apparent?
4. Adaptation to climate change in forest management;Spittlehouse;BC J. Ecosyst. Manag.,2003
5. Europe-wide reduction in primary productivity caused by the heat and drought in 2003
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献