Data-Driven Models for Forecasting Failure Modes in Oil and Gas Pipes

Author:

Elshaboury Nehal,Al-Sakkaf AbobakrORCID,Alfalah GhasanORCID,Abdelkader Eslam Mohammed

Abstract

Oil and gas pipelines are lifelines for a country’s economic survival. As a result, they must be closely monitored to maximize their performance and avoid product losses in the transportation of petroleum products. However, they can collapse, resulting in dangerous repercussions, financial losses, and environmental consequences. Therefore, assessing the pipe condition and quality would be of great significance. Pipeline safety is ensured using a variety of inspection techniques, despite being time-consuming and expensive. To address these inefficiencies, this study develops a model that anticipates sources of failure in oil pipelines based on specific factors related to pipe diameter and age, service (transported product), facility type, and land use. The model is developed using a multilayer perceptron (MLP) neural network, radial basis function (RBF) neural network, and multinomial logistic (MNL) regression based on historical data from pipeline incidents. With an average validity of 84% for the MLP, 85% for the RBF, and 81% for the MNL, the models can forecast pipeline failures owing to corrosion and third-party activities. The developed model can help pipeline operators and decision makers detect different failure sources in pipelines and prioritize the required maintenance and replacement actions.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference57 articles.

1. Risk Assessment System for Oil and Gas Pipelines Laid in One Ditch Based on Quantitative Risk Analysis

2. Mitigation of Risks Associated with Gas Pipeline Failure by Using Quantitative Risk Management Approach: A Descriptive Study on Gas Industry

3. Oil and Gas Pipeline Fundamentals;Kennedy,1993

4. Top 20 Countries By Length of Pipelinehttps://www.worldatlas.com/articles/top-20-countries-by-length-of-pipeline.html

5. Number of Oil Pipelines Globally by Status 2020https://www.statista.com/statistics/1131423/oil-pipelines-by-status-worldwide/

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3