Digitalized Automation Engineering of Industry 4.0 Production Systems and Their Tight Cooperation with Digital Twins

Author:

Novák PetrORCID,Vyskočil Jiří

Abstract

Smart production systems conforming the Industry 4.0 vision are based on subsystems that are integrated in a way that supports high flexibility and re-configurability. Specific components and devices, such as industrial and mobile robots or transport systems, now pose full-blown systems, and the entire Industry 4.0 production system constitutes a system-of-systems. Testing, fine-tuning, and production planning are important tasks in the entire engineering production system life-cycle. All these steps can be significantly supported and improved by digital twins, which are digitalized replicas of physical systems that are synchronized with the real systems at runtime. However, the design and implementation of digital twins for such integrated, yet partly stand-alone, industrial sub-systems can represent challenging and significantly time-consuming engineering tasks. In this article, the problem of the digital twin design for discrete-event production systems is addressed. The article also proposes to utilize a formal description of production resources and related production operations that the resources can perform. An executable version of such formalization can be automatically derived into a form of a digital twin. Such a derived digital twin can be enhanced with operation duration times that are obtained with process mining methods, leading to more realistic simulations for the entire production system. The proposed solution was successfully tested and validated in the Industry 4.0 Testbed, equipped with four robots and a transport system, which is utilized as a use-case in this article.

Funder

European Union's Horizon 2020 research and innovation programme

Technology Agency of the Czech Republic

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3