Isoniazid Linked to Sulfonate Esters via Hydrazone Functionality: Design, Synthesis, and Evaluation of Antitubercular Activity

Author:

Koçak Aslan EbruORCID,Han Muhammed İhsan,Krishna Vagolu Siva,Tamhaev Rasoul,Dengiz CagatayORCID,Doğan Şengül Dilem,Lherbet Christian,Mourey LionelORCID,Tønjum ToneORCID,Gündüz Miyase GözdeORCID

Abstract

Isoniazid (INH) is one of the key molecules employed in the treatment of tuberculosis (TB), the most deadly infectious disease worldwide. However, the efficacy of this cornerstone drug has seriously decreased due to emerging INH-resistant strains of Mycobacterium tuberculosis (Mtb). In the present study, we aimed to chemically tailor INH to overcome this resistance. We obtained thirteen novel compounds by linking INH to in-house synthesized sulfonate esters via a hydrazone bridge (SIH1–SIH13). Following structural characterization by FTIR, 1H NMR, 13C NMR, and HRMS, all compounds were screened for their antitubercular activity against Mtb H37Rv strain and INH-resistant clinical isolates carrying katG and inhA mutations. Additionally, the cytotoxic effects of SIH1–SIH13 were assessed on three different healthy host cell lines; HEK293, IMR-90, and BEAS-2B. Based on the obtained data, the synthesized compounds appeared as attractive antimycobacterial drug candidates with low cytotoxicity. Moreover, the stability of the hydrazone moiety in the chemical structure of the final compounds was confirmed by using UV/Vis spectroscopy in both aqueous medium and DMSO. Subsequently, the compounds were tested for their inhibitory activities against enoyl acyl carrier protein reductase (InhA), the primary target enzyme of INH. Although most of the synthesized compounds are hosted by the InhA binding pocket, SIH1–SIH13 do not primarily show their antitubercular activities by direct InhA inhibition. Finally, in silico determination of important physicochemical parameters of the molecules showed that SIH1–SIH13 adhered to Lipinski’s rule of five. Overall, our study revealed a new strategy for modifying INH to cope with the emerging drug-resistant strains of Mtb.

Funder

The Research Council of Norway

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3