Performance of Push–Pull Technology in Low-Fertility Soils under Conventional and Conservation Agriculture Farming Systems in Malawi

Author:

Niassy SaliouORCID,Agbodzavu Mawufe KomiORCID,Mudereri Bester TawonaORCID,Kamalongo Donwell,Ligowe Ivy,Hailu Girma,Kimathi Emily,Jere Zwide,Ochatum Nathan,Pittchar Jimmy,Kassie MenaleORCID,Khan Zeyaur

Abstract

Push–pull technology (PPT) is one of the most viable low-cost agroecological practices that reduces the effects of insect pest infestations (e.g., stemborer) and parasitic weeds (e.g., Striga) in croplands. PPT was evaluated in low-fertility soils and two farming practices, minimum-tilled conservation agriculture practice (CA), and conventionally tilled practice (CP), in contrasting agroecological zones at the Chitedze, Mbawa, and Chitala stations in Malawi. Stemborer and Striga infestations were also investigated and the suitability levels of two Desmodium species. Farmers’ perceptions of PPT were gathered through a focus group discussion. The performance of PPT varied significantly between treatments, sites, and years on grain yields and the number of cobs that could be assigned to soil attributes. Significant variations were found in the number of exit holes, stemborer damage severity, and the number of Striga-affected plants with severe infestation. In Chitedze, CP recorded significantly shorter maize plants by 14.1, 11.6, and 5.8 cm than CP–PP, CA, and CA–PP, respectively, in 2016–2017. There were no significant differences in plant height between CP–PP, CA, and CA–PP. Similar results were also found in 2017–2018. Focus group discussions among farmers attested to up to 70% reductions in Striga weed and stemborer pests under PPT over the two seasons. Farmers who used push–pull technology reported a 45–50% yield increase. Push–pull was also perceived as a technology that improves soil fertility and controls soil erosion. The study presented the importance of soil physicochemical properties in the performance of the technology, as supported by the high occurrence of Striga asiatica in the country and the low suitability of Greenleaf Desmodium. Results reaffirmed the technology’s agronomic benefits in productivity, pest management, plant vigour, and Striga control. The cost of labour was described as a challenge, and research to identify more suitable Desmodium species is needed. The current study suggests the release of the technology in Malawi, emphasizing the inclusion of Desmodium and Brachiaria as animal fodder for the adoption of the technology.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3