Statistical Properties of Estimators of the RMSD Item Fit Statistic

Author:

Robitzsch AlexanderORCID

Abstract

In this article, statistical properties of the root mean square deviation (RMSD) item fit statistic in item response models are studied. It is shown that RMSD estimates will indicate even misfit for items whose parametric assumption of the item response function is correct (i.e., fitting items) if some item response functions in the test are misspecified. Moreover, it is demonstrated that the RMSD values of misfitting and fitting items depend on the proportion of misfitting items. We propose three alternative bias-corrected RMSD estimators that reduce the bias for fitting items. However, these alternative estimators provide slightly negatively biased estimates for misfitting items compared to the originally proposed RMSD statistic. In the numerical experiments, we study the case of a misspecified one-parameter logistic item response model and the behavior of the RMSD statistic if differential item functioning occurs.

Publisher

MDPI AG

Reference54 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rasch analysis of the Depression, Anxiety, and Stress Scale in patients with chronic pain;Journal of Psychosomatic Research;2024-03

2. An Examination of the Linking Error Currently Used in PISA;Measurement: Interdisciplinary Research and Perspectives;2024-01-02

3. Alternatives to Weighted Item Fit Statistics for Establishing Measurement Invariance in Many Groups;Journal of Educational and Behavioral Statistics;2023-07-04

4. Four-Parameter Guessing Model and Related Item Response Models;Mathematical and Computational Applications;2022-11-17

5. Impact of differential item functioning on group score reporting in the context of large-scale assessments;Large-scale Assessments in Education;2022-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3