Author:
Lazopoulos Konstantinos A.
Abstract
Λ-fractional differential equations are discussed since they exhibit non-locality and accuracy. Fractional derivatives form fractional differential equations, considered as describing better various physical phenomena. Nevertheless, fractional derivatives fail to satisfy the prerequisites of differential topology for generating differentials. Hence, all the sources of generating fractional differential equations, such as fractional differential geometry, the fractional calculus of variations, and the fractional field theory, are not mathematically accurate. Nevertheless, the Λ-fractional derivative conforms to all prerequisites demanded by differential topology. Hence, the various mathematical forms, including those derivatives, do not lack the mathematical accuracy or defects of the well-known fractional derivatives. A summary of the Λ-fractional analysis is presented with its influence on the sources of differential equations, such as fractional differential geometry, field theorems, and calculus of variations. Λ-fractional ordinary and partial differential equations will be discussed.
Reference26 articles.
1. The non-linear field theories of mechanics;Truesdell,1965
2. The Fractal Geometry of Nature;Mandelbrot,1983
3. Fractals in Physics
4. Fractals in biology and medicine;Havlin;Chaos Solitons Fractals,1995
5. Fractals Everywhere;Barnsley,1998
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献