Exchangeable Quantities and Power Laws: Τhe Case of Pores in Solids

Author:

Margellou Antigoni G.1ORCID,Pomonis Philippos J.2

Affiliation:

1. Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2. Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

Abstract

In this work we suggest that the common cause for the development of various power laws is the existence of a suitable exchangeable quantity between the agents of a set. Examples of such exchangeable quantities, leading to eponymous power laws, include money (Pareto’s Law), scientific knowledge (Lotka’s Law), people (Auerbach’s Law), and written or verbal information (Zipf’s Law), as well as less common cases like bullets during deadly conflicts, recognition in social networks, heat between the atmosphere and sea-ice floes, and, finally, mass of water vapors between pores in solids. This last case is examined closely in the present article based on extensive experimental data. It is shown that the transferred mass between pores, which eventually grow towards a power law distribution, may be expressed using different parameters, either transferred surface area, or transferred volume, or transferred pore length or transferred pore anisotropy. These distinctions lead to different power laws of variable strength as reflected by the corresponding exponent. The exponents depend quantitatively on the spread of frequency distribution of the examined parameter and tend to zero as the spread of distribution tends to a single order of magnitude. A comparison between the energy and the entropy of different kinds of pore distributions reveals that these two statistical parameters are linearly related, implying that the system poise at a critical state and the exchangeable quantities are the most convenient operations helping to keep this balance.

Publisher

MDPI AG

Reference53 articles.

1. Power laws, pareto distributions and zipf’s law;Newman;Contemp. Phys.,2005

2. Bousquet, G.H., and Busino, G. (1964). Cours D’économie Politique: Nouvelle Edition, Libraire Droz.

3. The frequency distribution of scientific productivity;Lotka;J. Wash. Acad. Sci.,1926

4. The architecture of complexity;IEEE Control Syst. Mag.,2007

5. Why gaussian statistics are mostly wrong for strategic organization;McKelvey;Strateg. Organ.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3