Lévy Walks as a Universal Mechanism of Turbulence Nonlocality

Author:

Kukushkin Alexander B.123ORCID,Kulichenko Andrei A.1

Affiliation:

1. National Research Center “Kurchatov Institute”, 123182 Moscow, Russia

2. National Research Nuclear University MEPhI, (Moscow Engineering Physics Institute), 115409 Moscow, Russia

3. National Research University, (Moscow Institute of Physics and Technology), Dolgoprudny, 141700 Moscow, Russia

Abstract

The nonlocality (superdiffusion) of turbulence is expressed in the empiric Richardson t3 scaling law for the mean square of the mutual separation of a pair of particles in a fluid or gaseous medium. The development of the theory of nonlocality of various processes in physics and other sciences based on the concept of Lévy flights resulted in Shlesinger and colleagues’ about the possibility of describing the nonlocality of turbulence using a linear integro-differential equation with a slowly falling kernel. The approach developed by us made it possible to establish the closeness of the superdiffusion parameter of plasma density fluctuations moving across a strong magnetic field in a tokamak to the Richardson law. In this paper, we show the possibility of a universal description of the characteristics of nonlocality of transfer in a stochastic medium (including turbulence of gases and fluids) using the Biberman–Holstein approach to examine the transfer of excitation of a medium by photons, generalized in order to take into account the finiteness of the velocity of excitation carriers. This approach enables us to propose a scaling that generalizes Richardson’s t3 scaling law to the combined regime of Lévy flights and Lévy walks in fluids and gases.

Publisher

MDPI AG

Subject

Applied Mathematics,General Mathematics

Reference76 articles.

1. Atmospheric diffusion shown on a distant-neighbour graph;Richardson;Proc. Roy. Soc.,1926

2. The application of the similarity theory of turbulence to atmospheric diffusion;Batchelor;Q. J. R. Meteorol. Soc.,1950

3. Non-local dispersion and the reassessment of Richardson’s t3-scaling law;Elsinga;J. Fluid Mech.,2022

4. Shlesinger, M., Zaslavsky, G.M., and Frisch, U. (1995). Lévy Flights and Related Topics in Physics, Springer.

5. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature, W. H. Freeman.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3