Abstract
Hexavalent chromium is a carcinogenic heavy metal that needs to be removed effectively from polluted aquifers in order to protect public health and the environment. This work aims to evaluate the reduction of Cr(VI) to Cr(III) in a contaminated aquifer through the stimulation of indigenous microbial communities with the addition of reductive agents. Soil-column experiments were conducted in the absence of oxygen and at hexavalent chromium (Cr(VI)) groundwater concentrations in the 1000–2000 μg/L range. Two carbon sources (molasses and EVO) and one iron electron donor (FeSO4·7H2O) were used as ways to stimulate the metabolism and proliferation of Cr(VI) reducing bacteria in-situ. The obtained results indicate that microbial anaerobic respiration and electron transfer can be fundamental to alleviate polluted groundwater from hazardous Cr(VI). The addition of organic electron donors increased significantly Cr(VI) reduction rates in comparison to natural soil attenuation rates. Furthermore, a combination of organic carbon and iron electron donors led to a longer life span of the remediation process and thus increased total Cr(VI) removal. This is the first study to investigate biotic and abiotic Cr(VI) removal by conducting experiments with natural soil and by applying biostimulation to modify the natural existing microbial communities.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献