Preliminary Study on the Diagnostic Performance of a Deep Learning System for Submandibular Gland Inflammation Using Ultrasonography Images

Author:

Kise YoshitakaORCID,Kuwada Chiaki,Ariji Yoshiko,Naitoh Munetaka,Ariji EiichiroORCID

Abstract

This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren’s syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3