Use of a Pre-Trained Neural Network for Automatic Classification of Arterial Doppler Flow Waveforms: A Proof of Concept

Author:

Guilcher Antoine,Laneelle DamienORCID,Mahé GuillaumeORCID

Abstract

Background: Arterial Doppler flow waveform analysis is a tool recommended for the management of lower extremity peripheral arterial disease (PAD). To standardize the waveform analysis, classifications have been proposed. Neural networks have shown a great ability to categorize data. The aim of the present study was to use an existing neural network to evaluate the potential for categorization of arterial Doppler flow waveforms according to a commonly used classification. Methods: The Pareto efficient ResNet-101 (ResNet-101) neural network was chosen to categorize 424 images of arterial Doppler flow waveforms according to the Simplified Saint-Bonnet classification. As a reference, the inter-operator variability between two trained vascular medicine physicians was also assessed. Accuracy was expressed in percentage, and agreement was assessed using Cohen’s Kappa coefficient. Results: After retraining, ResNet-101 was able to categorize waveforms with 83.7 ± 4.6% accuracy resulting in a kappa coefficient of 0.79 (0.75–0.83) (CI 95%), compared with a kappa coefficient of 0.83 (0.79–0.87) (CI 95%) between the two physicians. Conclusion: This study suggests that the use of transfer learning on a pre-trained neural network is feasible for the automatic classification of images of arterial Doppler flow waveforms.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scoping Review of Cerebral Doppler Arterial Waveforms in Infants;Ultrasound in Medicine & Biology;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3