Involvement of Cutaneous Sensory Corpuscles in Non-Painful and Painful Diabetic Neuropathy

Author:

García-Mesa YolandaORCID,Feito JorgeORCID,González-Gay Mario,Martínez Irene,García-Piqueras JorgeORCID,Martín-Cruces JoséORCID,Viña Eliseo,Cobo Teresa,García-Suárez Olivia

Abstract

Distal diabetic sensorimotor polyneuropathy (DDSP) is the most prevalent form of diabetic neuropathy, and some of the patients develop gradual pain. Specialized sensory structures present in the skin encode different modalities of somatosensitivity such as temperature, touch, and pain. The cutaneous sensory structures responsible for the qualities of mechanosensitivity (fine touch, vibration) are collectively known as cutaneous mechanoreceptors (Meissner corpuscles, Pacinian corpuscles, and Merkel cell–axonal complexes), which results are altered during diabetes. Here, we used immunohistochemistry to analyze the density, localization within the dermis, arrangement of corpuscular components (axons and Schwann-like cells), and expression of putative mechanoproteins (PIEZO2, ASIC2, and TRPV4) in cutaneous mechanoreceptors of subjects suffering clinically diagnosed non-painful and painful distal diabetic sensorimotor polyneuropathy. The number of Meissner corpuscles, Pacinian corpuscles, and Merkel cells was found to be severely decreased in the non-painful presentation of the disease, and almost disappeared in the painful presentation. Furthermore, there was a marked reduction in the expression of axonal and Schwann-like cell markers (with are characteristics of corpuscular denervation) as well as of all investigated mechanoproteins in the non-painful distal diabetic sensorimotor polyneuropathy, and these were absent in the painful form. Taken together, these alterations might explain, at least partly, the impairment of mechanosensitivity system associated with distal diabetic sensorimotor polyneuropathy. Furthermore, our results support that an increasing severity of DDSP may increase the risk of developing painful neuropathic symptoms. However, why the absence of cutaneous mechanoreceptors is associated with pain remains to be elucidated.

Funder

Universidad de Oviedo

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3