Magnetic Properties of Gd-Doped Bi7Fe3Ti3O21 Aurivillius-Type Ceramics

Author:

Bartkowska Joanna A.1,Szalbot Diana1ORCID,Makowska Jolanta1,Adamczyk-Habrajska Małgorzata1ORCID,Stokłosa Zbigniew1ORCID

Affiliation:

1. Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland

Abstract

The magnetic properties of Aurivillius-phase Bi7Fe3Ti3O21 (BFT) and Bi7−xGdxFe3Ti3O21, where x = 0.2, 0.4, and 0.6 (BGFT), were investigated. Ceramic material undoped (BGF) and doped with Gd3+ ions were prepared by conventional solid-state reaction. In order to confirm that the obtained materials belong to Aurivillius structures, XRD tests were performed. The XRD results confirmed that both the undoped and the gadolinium-doped materials belong to the Aurivillius phases. The qualitative chemical composition of the obtained materials was confirmed based on EDS tests. The temperature dependences of magnetization and magnetic susceptibility were examined for the ceramic material both undoped and doped with Gd3+ ions. The measurements were taken in the temperature range from T = 10 K to T = 300 K. Using Curie’s law, the value of the Curie constant was determined, and on its basis, the number of iron ions that take part in magnetic processes was calculated. The value of Curie constant C = 0.266 K, while the concentration of iron ions Fe3+, which influence the magnetic properties of the material, is equal 3.7 mol% (for BFT). Hysteresis loop measurements were also performed at temperatures of T = 10 K, T = 77 K, and T = 300 K. The dependence of magnetization on the magnetic field was described by the Brillouin function, and on its basis, the concentration of Fe3+ ions, which are involved in magnetic properties, was also calculated (3.4 mol% for BFT). Tests showed that the material is characterized by magnetic properties at low temperatures. At room temperature (RT), it has paramagnetic properties. It was also found that Gd3+ ions improve the magnetic properties of tested material.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3