The Role of Deformation and Microstructure Evolution on Texture Formation of a TA15 Alloy Subjected to Plane Strain Compression

Author:

Wang Xianxian12,Jia Xin1,Wu Wenhao1,Cheng Jun3,Zhao Xueni1ORCID,Shen Mingjie1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

2. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China

3. Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China

Abstract

In this study, the texture formation mechanism of a TA15 titanium alloy under different plane strain compression conditions was investigated by analyzing the slipping, dynamic recrystallization (DRX) and phase transformation behaviors. The results indicated that the basal texture component basically appears under all conditions, since the dominant basal slip makes the C-axis of the α grain rotate to the normal direction (ND, i.e., compression direction), but it has a different degree of deflection. With an increase in deformation amount, temperature or strain rate, {0001} poles first approach the ND and then deviate from it. Such deviation is mainly caused by a change in slip behaviors and phase transformation. At a smaller deformation amount and higher strain rate, inhomogeneous deformation easily causes a basal slip preferentially arising from the grain with a soft orientation, resulting in a weak basal texture component. A greater deformation amount can increase the principal strain ratio, thereby promoting other slip systems to be activated, and a lower temperature can increase the critical shear stress of the basal slip, further causing a dispersive orientation under these conditions. At a higher temperature and a lower strain rate, apparent phase transformation will induce the occurrence of lamellar α whose orientation obeys the Burgers orientation of the β phase, thereby disturbing and weakening the deformation texture. As for DRX, continuous-type (CDRX) is most common under most conditions, whereas CDRX grains have a similar orientation to deformed grains, so DRX has little effect on overall texture. Moreover, the microhardness of samples is basically inversely proportional to the grain size, and it can be significantly improved as lamellar α occurs. In addition, deformed samples with a weaker texture present a higher microhardness due to the smaller Schmidt factors of the activated prism slip at ambient loading.

Funder

State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3