Affiliation:
1. Department of Chemistry, Faculty of Natural Sciences, Kazakh State Women’s Teacher Training University, Almaty 050000, Kazakhstan
2. Department of General Physics, Siberian Federal University, Krasnoyarsk 660041, Russia
Abstract
In this article, the sol–gel method was used as a synthesis method, which shows the physicochemical nature of the synthesis of a new complex material, ferrite Li0.5MnFe1.5O4. The structure and composition of the synthesized ferrite were determined by X-ray phase analysis. According to analysis indicators, it was found that our compound is a single-phase, spinel-structured, and syngony-cubic type of compound. The microstructure of the compound and the quantitative composition of the elements contained within it were analyzed under a scanning electron microscope (SEM). Under a scanning electron microscope, microsystems were taken from different parts of Li0.5MnFe1.5O4-type crystallite; the elemental composition of crystals was analyzed; and the general type of surface layer of complex ferrite was shown. As a result, given the fact that the compound consists of a single phase, the clarity of its construction was determined by the topography and chemical composition of the compound. As a result, it was found that the newly synthesized complex ferrites correspond to the formula Li0.5MnFe1.5O4. The particles of the formed compounds have a large size (between 50.0 μm or 20.0 μm and 10.0 μm). Electrophysical measurements were carried out on an LCR-800 unit at intervals of 293–483 K and at frequencies of 1.5 and 10 kHz. An increase in frequency to 10 kHz led to a decrease in the value ε in the range of the studied temperature (293–483 K).