Improving the Oxidation Resistance of Phenolic Resin Pyrolytic Carbons by In Situ Catalytic Formation of Carbon Nanofibers via Copper Nitrate

Author:

Wu Zhi1ORCID,Jiang Pengcheng1,Pang Hongxing12,Cheng Guanghai1,Li Jiajun1,Liu Hao2,Ma Yan2,Dong Yunjie2,Wang Zhoufu2

Affiliation:

1. School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China

2. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, China

Abstract

Phenolic resin pyrolytic carbons were obtained by catalytic pyrolysis of phenolic resin at 500 °C, 600 °C, 700 °C, and 800 °C for 3 h in an argon atmosphere using copper nitrate as a catalyst precursor. The effects of copper salts on the pyrolysis process of phenolic resin as well as the structural evolution and oxidation resistance of phenolic resin pyrolytic carbons were studied. The results showed that copper oxide (CuO) generated from the thermal decomposition of copper nitrate was reduced to copper (Cu) by the gas generated from the thermal decomposition of the phenolic resin. Carbon nanofibers with tapered structures were synthesized by Cu catalysis of pyrolysis gas at 500–800 °C. The catalytic pyrolysis of phenolic resin with Cu increased the graphitization degree and reduced the pore volume of the phenolic resin pyrolytic carbons. The combined action improved the oxidation resistance of phenolic resin pyrolytic carbons.

Funder

National Natural Science Foundation of China

Characteristic Application Discipline of Material Science and Engineering in Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3