Affiliation:
1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2. Hubei Three Gorges Laboratory, Yichang 443007, China
Abstract
Cellulose aerogels are considered as ideal thermal insulation materials owing to their excellent properties such as a low density, high porosity, and low thermal conductivity. However, they still suffer from poor mechanical properties and low flame retardancy. In this study, mullite-fibers-reinforced bagasse cellulose (Mubce) aerogels are designed using bagasse cellulose as the raw material, mullite fibers as the reinforcing agent, glutaraldehyde as the cross-linking agent, and chitosan as the additive. The resulted Mubce aerogels exhibit a low density of 0.085 g/cm3, a high porosity of 93.2%, a low thermal conductivity of 0.0276 W/(m∙K), superior mechanical performances, and an enhanced flame retardancy. The present work offers a novel and straightforward strategy for creating high-performance aerogels, aiming to broaden the application of cellulose aerogels in thermal insulation.
Funder
National Natural Science Foundation of China
Open/Innovation Foundation of Hubei Three Gorges Laboratory
Innovation and Entrepreneurship Training Program for College Students