Litter Decomposition and Nutrient Dynamics in Fire-Affected Larch Forests in the Russian Far East

Author:

Bryanin SemyonORCID,Kondratova Anjelica,Abramova Evgeniya

Abstract

Russian boreal forests hold a considerable carbon (C) stock and are subjected to frequent surface fires that unbalance C storage and ecosystem function. Although postfire ecological changes aboveground are well understood, biological C flows (e.g., decomposition in the postfire period) remain unclear. We present the results of a long-term field litterbag experiment on needle litter decomposition in typical Larix gmelinii boreal forests in the Russian Far East. For 3 years, we measured mass loss, C and nitrogen (N) concentrations, lignin and manganese dynamics, respiration intensity and enzyme activity in decaying needles, and environmental conditions (temperature and litter moisture). The decomposition rate at 850 days was 0.435 and 0.213 yr−1 in a control forest and in a forest 15 years after a surface fire, respectively. Early stages of needle decay did not differ among sites, whereas decomposition slowed in later stages in burned forest relative to the control (p < 0.01). This was supported by hampered respiration, slow lignin accumulation in decaying needles, and low peroxidase activity in burned forest. We found no direct N release, and decaying litter immobilization was more pronounced in the control forest. In the later stages, we revealed restrained mass loss and associated C release from larch litter in burned forest. Slow and delayed N release may alter organic matter accumulation, the N cycle, and regeneration of the fire-disturbed larch ecosystem. Our investigations highlight hampered C flow from aboveground litter to soil humus even decades after surface fire in a larch ecosystem. Given the climate-induced increase of fire activity, C retained in the litter layer represents a pool that is more vulnerable to the next fire event.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3