Abstract
In the last decades, the development of interconnectivity, pervasive systems, citizen sensors, and Big Data technologies allowed us to gather many data from different sources worldwide. This phenomenon has raised privacy concerns around the globe, compelling states to enforce data protection laws. In parallel, privacy-enhancing techniques have emerged to meet regulation requirements allowing companies and researchers to exploit individual data in a privacy-aware way. Thus, data curators need to find the most suitable algorithms to meet a required trade-off between utility and privacy. This crucial task could take a lot of time since there is a lack of benchmarks on privacy techniques. To fill this gap, we compare classical approaches of privacy techniques like Statistical Disclosure Control and Differential Privacy techniques to more recent techniques such as Generative Adversarial Networks and Machine Learning Copies using an entire commercial database in the current effort. The obtained results allow us to show the evolution of privacy techniques and depict new uses of the privacy-aware Machine Learning techniques.
Subject
General Physics and Astronomy
Reference48 articles.
1. A quantitative comparison of disclosure control methods for microdata;Domingo-Ferrer,2001
2. Disclosure risk assessment in perturbative microdata protection;Yancey,2002
3. Post-masking optimization of the tradeoff between information loss and disclosure risk in masked microdata sets;Sebé,2002
4. Microaggregation heuristic applied to statistical disclosure control
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献