In Vivo Neuropharmacological Potential of Gomphandra tetrandra (Wall.) Sleumer and In-Silico Study against β-Amyloid Precursor Protein

Author:

Rahman Md. SaidurORCID,Zilani Md. Nazmul HasanORCID,Islam Md. Aminul,Hasan Md. Munaib,Islam Md. Muzahidul,Yasmin Farzana,Biswas Partha,Hirashima Akinori,Rahman Md. AtaurORCID,Hasan Md. NazmulORCID,Kim BongleeORCID

Abstract

Medicinal plants possess a surplus of novel and biologically active secondary metabolites that are responsible for counteracting diseases. Traditionally, Gomphandra tetrandra (Wall.) Sleumer is used to treat mental disorders. The present research was designed to explore phytochemicals from the ethanol leaf extract of Gomphandra tetrandra (Wall.) Sleumer to identify the potential pharmacophore(s) in the treatment of neurological disorders. The chemical compounds of the experimental plant were identified through GC-MS analysis. In-vitro antioxidant activity was assessed using different methods. Furthermore, in-vivo neurological activity was assessed in Swiss-albino mice. Computer-aided analysis was appraised to determine the best-fit phytoconstituent of a total of fifteen identified compounds in the experimental plant extract against beta-amyloid precursor protein. The experimental extract revealed fifteen compounds in GC-MS analysis and the highest content was 9, 12, 15-octadecatrienoic acid (z,z,z). The extract showed potent antioxidant activity in in-vitro assays. Furthermore, in in-vivo neurological assays, the extract disclosed significant (p < 0.05) neurological activity. The most favorable phytochemicals as neurological agents were selected via ADMET profiling, and molecular docking was studied with beta-amyloid precursor protein. In the computer-aided study, 1, 5-diphenyl-2h-1, 2, 4-triazoline-3-thione (Pub Chem CID: 2802516) was more active than other identified compounds with strong binding affinity to beta-amyloid precursor protein. The present in vivo and in silico studies revealed neuropharmacological features of G. tetrandra leaf extract as a natural agent against neurological disorders, especially Alzheimer’s disease.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3