SM2-Based Offline/Online Efficient Data Integrity Verification Scheme for Multiple Application Scenarios

Author:

Li Xiuguang12ORCID,Yi Zhengge3,Li Ruifeng2,Wang Xu-An2ORCID,Li Hui1,Yang Xiaoyuan23

Affiliation:

1. State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710126, China

2. Cryptographic Engineering College, Chinese People’s Armed Police Force Engineering University, Xi’an 710086, China

3. Key Lab of the Armed Police Force for Network and Information Security, Xi’an 710086, China

Abstract

With the rapid development of cloud storage and cloud computing technology, users tend to store data in the cloud for more convenient services. In order to ensure the integrity of cloud data, scholars have proposed cloud data integrity verification schemes to protect users’ data security. The storage environment of the Internet of Things, in terms of big data and medical big data, demonstrates a stronger demand for data integrity verification schemes, but at the same time, the comprehensive function of data integrity verification schemes is required to be higher. Existing data integrity verification schemes are mostly applied in the cloud storage environment but cannot successfully be applied to the environment of the Internet of Things in the context of big data storage and medical big data storage. To solve this problem when combined with the characteristics and requirements of Internet of Things data storage and medical data storage, we designed an SM2-based offline/online efficient data integrity verification scheme. The resulting scheme uses the SM4 block cryptography algorithm to protect the privacy of the data content and uses a dynamic hash table to realize the dynamic updating of data. Based on the SM2 signature algorithm, the scheme can also realize offline tag generation and batch audits, reducing the computational burden of users. In security proof and efficiency analysis, the scheme has proven to be safe and efficient and can be used in a variety of application scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3