Echo-ID: Smartphone Placement Region Identification for Context-Aware Computing

Author:

Jiang Xueting1,Zhao Zhongning1,Li Zhiyuan1,Hong Feng1ORCID

Affiliation:

1. Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China

Abstract

Region-function combinations are essential for smartphones to be intelligent and context-aware. The prerequisite for providing intelligent services is that the device can recognize the contextual region in which it resides. The existing region recognition schemes are mainly based on indoor positioning, which require pre-installed infrastructures or tedious calibration efforts or memory burden of precise locations. In addition, location classification recognition methods are limited by either their recognition granularity being too large (room-level) or too small (centimeter-level, requiring training data collection at multiple positions within the region), which constrains the applications of providing contextual awareness services based on region function combinations. In this paper, we propose a novel mobile system, called Echo-ID, that enables a phone to identify the region in which it resides without requiring any additional sensors or pre-installed infrastructure. Echo-ID applies Frequency Modulated Continuous Wave (FMCW) acoustic signals as its sensing medium which is transmitted and received by the speaker and microphones already available in common smartphones. The spatial relationships among the surrounding objects and the smartphone are extracted with a signal processing procedure. We further design a deep learning model to achieve accurate region identification, which calculate finer features inside the spatial relations, robust to phone placement uncertainty and environmental variation. Echo-ID requires users only to put their phone at two orthogonal angles for 8.5 s each inside a target region before use. We implement Echo-ID on the Android platform and evaluate it with Xiaomi 12 Pro and Honor-10 smartphones. Our experiments demonstrate that Echo-ID achieves an average accuracy of 94.6% for identifying five typical regions, with an improvement of 35.5% compared to EchoTag. The results confirm Echo-ID’s robustness and effectiveness for region identification.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3