ML Approach to Improve the Costs and Reliability of a Wireless Sensor Network

Author:

Ayanoglu Mehmet Bugrahan1,Uysal Ismail1

Affiliation:

1. Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA

Abstract

Temperature-controlled closed-loop systems are vital to the transportation of produce. By maintaining specific transportation temperatures and adjusting to environmental factors, these systems delay decomposition. Wireless sensor networks (WSN) can be used to monitor the temperature levels at different locations within these transportation containers and provide feedback to these systems. However, there are a range of unique challenges in WSN implementations, such as the cost of the hardware, implementation difficulties, and the general ruggedness of the environment. This paper presents the novel results of a real-life application, where a sensor network was implemented to monitor the environmental temperatures at different locations inside commercial temperature-controlled shipping containers. The possibility of predicting one or more locations inside the container in the absence or breakdown of a logger placed in that location is explored using combinatorial input–output settings. A total of 1016 machine learning (ML) models are exhaustively trained, tested, and validated in search of the best model and the best combinations to produce a higher prediction result. The statistical correlations between different loggers and logger combinations are studied to identify a systematic approach to finding the optimal setting and placement of loggers under a cost constraint. Our findings suggest that even under different and incrementally higher cost constraints, one can use empirical approaches such as neural networks to predict temperature variations in a location with an absent or failed logger, within a margin of error comparable to the manufacturer-specified sensor accuracy. In fact, the median test accuracy is 1.02 degrees Fahrenheit when using only a single sensor to predict the remaining locations under the assumptions of critical system failure, and drops to as little as 0.8 and 0.65 degrees Fahrenheit when using one or three more sensors in the prediction algorithm. We also demonstrate that, by using correlation coefficients and time series similarity measurements, one can identify the optimal input–output pairs for the prediction algorithm reliably under most instances. For example, discrete time warping can be used to select the best location to place the sensors with a 92% match between the lowest prediction error and the highest similarity sensor with the rest of the group. The findings of this research can be used for power management in sensor batteries, especially for long transportation routes, by alternating standby modes where the temperature data for the OFF sensors are predicted by the ON sensors.

Funder

United States Department of Agriculture

Florida Department of Agriculture and Consumer Services

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Power Supply Issues in Battery Reliant Wireless Sensor Networks: A Review;Guo;J. Intell. Control. Syst.,2014

2. A survey on power control issues in wireless sensor networks;Pantazis;IEEE Commun. Surv. Tutor.,2007

3. 10 Challenging Problems in Data Mining Research;Yang;Int. J. Inf. Technol. Decis. Mak.,2006

4. Data estimation methods for predicting temperatures of fruit in refrigerated containers;Carthy;Biosyst. Eng.,2016

5. Global food security—Issues, challenges and technological solutions;Carthy;Trends Food Sci. Technol.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Autoregressive Moving Average Models in Wireless Sensor Network Time Series Analysis;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3