Satellite Remote Sensing of the Greenland Ice Sheet Ablation Zone: A Review

Author:

Cooper MatthewORCID,Smith Laurence

Abstract

The Greenland Ice Sheet is now the largest land ice contributor to global sea level rise, largely driven by increased surface meltwater runoff from the ablation zone, i.e., areas of the ice sheet where annual mass losses exceed gains. This small but critically important area of the ice sheet has expanded in size by ~50% since the early 1960s, and satellite remote sensing is a powerful tool for monitoring the physical processes that influence its surface mass balance. This review synthesizes key remote sensing methods and scientific findings from satellite remote sensing of the Greenland Ice Sheet ablation zone, covering progress in (1) radar altimetry, (2) laser (lidar) altimetry, (3) gravimetry, (4) multispectral optical imagery, and (5) microwave and thermal imagery. Physical characteristics and quantities examined include surface elevation change, gravimetric mass balance, reflectance, albedo, and mapping of surface melt extent and glaciological facies and zones. The review concludes that future progress will benefit most from methods that combine multi-sensor, multi-wavelength, and cross-platform datasets designed to discriminate the widely varying surface processes in the ablation zone. Specific examples include fusing laser altimetry, radar altimetry, and optical stereophotogrammetry to enhance spatial measurement density, cross-validate surface elevation change, and diagnose radar elevation bias; employing dual-frequency radar, microwave scatterometry, or combining radar and laser altimetry to map seasonal snow depth; fusing optical imagery, radar imagery, and microwave scatterometry to discriminate between snow, liquid water, refrozen meltwater, and bare ice near the equilibrium line altitude; combining optical reflectance with laser altimetry to map supraglacial lake, stream, and crevasse bathymetry; and monitoring the inland migration of snowlines, surface melt extent, and supraglacial hydrologic features.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3