Dense Image-Matching via Optical Flow Field Estimation and Fast-Guided Filter Refinement

Author:

Yuan ,Yuan ,Xu ,Gong ,Shibasaki

Abstract

The development of an efficient and robust method for dense image-matching has been a technical challenge due to high variations in illumination and ground features of aerial images of large areas. In this paper, we propose a method for the dense matching of aerial images using an optical flow field and a fast-guided filter. The proposed method utilizes a coarse-to-fine matching strategy for a pixel-wise correspondence search across stereo image pairs. The pyramid Lucas–Kanade (L–K) method is first used to generate a sparse optical flow field within the stereo image pairs, and an adjusted control lattice is then used to derive the multi-level B-spline interpolating function for estimating the dense optical flow field. The dense correspondence is subsequently refined through a combination of a novel cross-region-based voting process and fast guided filtering. The performance of the proposed method was evaluated on three bases, namely, the matching accuracy, the matching success rate, and the matching efficiency. The evaluative experiments were performed using sets of unmanned aerial vehicle (UAV) images and aerial digital mapping camera (DMC) images. The results showed that the proposed method afforded the root mean square error (RMSE) of the reprojection errors better than ±0.5 pixels in image, and a height accuracy within ±2.5 GSD (ground sampling distance) from the ground. The method was further compared with the state-of-the-art commercial software SURE and confirmed to deliver more complete matches for images with poor-texture areas, the matching success rate of the proposed method is higher than 97% while SURE is 96%, and there is 47% higher matching efficiency. This demonstrates the superior applicability of the proposed method to aerial image-based dense matching with poor texture regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Network-Based Automatic Seamline Detection for Orthophoto Mosaicking;IEEE Transactions on Geoscience and Remote Sensing;2024

2. An optical flow-based terrain extraction framework of VHR optical satellite stereo images;International Journal of Applied Earth Observation and Geoinformation;2023-11

3. Few-Shot Depth Completion Using Denoising Diffusion Probabilistic Model;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

4. Fully automatic DOM generation method based on optical flow field dense image matching;Geo-spatial Information Science;2023-01-24

5. Cross-Scale Attention-based Tree Crown Detection via UAV imagery;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3