The Peptide AWRK6 Alleviates Lipid Accumulation in Hepatocytes by Inhibiting miR-5100 Targeting G6PC

Author:

Liu Jiaxin1,Liu Ying2,Wang Qiuyu1,Jin Lili1,Zhang Dianbao2ORCID

Affiliation:

1. School of Life Sciences, Liaoning University, Shenyang 110036, China

2. Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease, with a worldwide prevalence of more than 25%, and there is no approved drug for NAFLD specifically. In our previous study, the synthetic peptide AWRK6 was found to ameliorate NAFLD in mice. However, the mechanisms involved are still largely unknown. Here, AWRK6 treatment presented an alleviative effect on lipid accumulation induced by oleic acid in hepatocytes. Meanwhile, miR-5100 and miR-505 were found to be elevated by oleic acid induction and reversed by AWRK6 incubation. Further, the miR-5100 inhibitor inhibited oleic acid-induced lipid accumulation, and the alleviation effect of AWRK6 was partially counteracted by miR-5100 mimics. The screening of potential target genes revealed that a catalytic subunit of G6Pase G6PC was significantly inhibited by miR-5100 mimics transfection in both mRNA and protein levels. The direct targeting of miR-5100 on G6PC was verified by a Dual-Luciferase Reporter Assay. Moreover, the mRNA and protein levels of G6PC were found to be significantly increased by AWRK6 treatment. These results suggested that the peptide AWRK6 could alleviate lipid accumulation in hepatocytes, partly through reducing miR-5100 to restore one of its targets: G6PC. Thus, AWRK6 has the potential to treat NAFLD. Additionally, miR-5100 is a mediator of lipid accumulation in hepatocytes, which could be targeted by AWRK6.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3