A Sensitive, Cell-Based Assay for Measuring Low-Level Biological Activity of α-Amanitin

Author:

Rasooly Reuven1ORCID,Do Paula1ORCID,He Xiaohua1ORCID,Hernlem Bradley1

Affiliation:

1. Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA

Abstract

α-Amanitin is one of the primary toxins produced by the poisonous mushroom genus, Amanita. Because it is odorless and tasteless, it is an important cause of death from the consumption of misidentified mushrooms. To study the thermal stability of α-amanitin, novel cell-based assays were developed to measure the toxin’s activity, based on the inhibition of RNA polymerase II by α-amanitin. First, an MTT–formazan cell viability assay was used to measure the biological activity of α-amanitin through the inhibition of cellular activity. This method can detect 10 μg/mL of α-amanitin in a time-dependent manner. Second, a more sensitive quantitative PCR approach was developed to examine its inhibition of viral replication. The new RT-qPCR assay enabled the detection of 100 ng/mL. At this level, α-amanitin still significantly reduced adenovirus transcription. Third, a simpler GFP expression-based assay was developed with an equal sensitivity to the RT-qPCR assay. With this assay, aqueous α-amanitin heated at 90 °C for 16 h or treated in the microwave for 3 min retained its biological activity when tested in HEK293 cells, but a slight reduction was observed when tested in Vero cells. Beyond detecting the activity of α-amanitin, the new method has a potential application for detecting the activity of other toxins that are RNA polymerase inhibitors.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3