Regulation of NAD+/NADH Redox Involves the Protective Effects of Ginsenoside Rb1 against Oxygen–Glucose Deprivation/Reoxygenation-Induced Astrocyte Lesions
-
Published:2023-11-07
Issue:22
Volume:24
Page:16059
-
ISSN:1422-0067
-
Container-title:International Journal of Molecular Sciences
-
language:en
-
Short-container-title:IJMS
Author:
Liu Ying1,
Wang Xi1,
Xie Jiayu1,
Tang Minke1ORCID
Affiliation:
1. Department of Chinese Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
Abstract
The aim of this study was to investigate NAD+/NADH redox regulation in astrocytes by Ginsenoside Rb1 subjected to oxygen–glucose deprivation/reoxygenation (OGD/R) and to reveal the neuroprotective mechanism of ginseng. Neonatal mouse brain was used to culture primary astrocytes. The third generation of the primary astrocytes was used for the experiments. OGD/R was introduced by culturing the cells in a glucose-free media under nitrogen for 6 h followed by a regular culture for 24 h. Ginsenoside Rb1 attenuated OGD/R-induced astrocyte injury in a dose-dependent manner. It improved the mitochondrial function of OGD/R astrocytes indicated by improving mitochondrial distribution, increasing mitochondrial membrane potential, and enhancing mitochondrial DNA copies and ATP production. Ginsenoside Rb1 significantly lifted intracellular NAD+/NADH, NADPH/NADP+, and GSH/GSSG in OGD/R astrocytes. It inhibited the protein expression of both PARP1 and CD38, while attenuating the SIRT1 drop in OGD/R cells. In line with its effects on PARP1, Ginsenoside Rb1 significantly reduced the expression of poly-ADP-ribosylation (PARylation) proteins in OGD/R cells. Ginsenoside Rb1 also significantly increased the expression of NAMPT and NMNAT2, both of which are key players in NAD/NADH synthesis. The results suggest that the regulation of NAD+/NADH redox involves the protective effects of ginsenoside Rb1 against OGD/R-induced astrocyte injury.
Funder
National Administration of Traditional Chinese Medicine
Ministry of Science and Technology
Ministry of Education
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献