Knockout of ovary serine protease Leads to Ovary Deformation and Female Sterility in the Asian Corn Borer, Ostrinia furnacalis

Author:

Zhang Porui1,Jialaliding Zuerdong1,Gu Junwen1,Merchant Austin2,Zhang Qi1ORCID,Zhou Xuguo2ORCID

Affiliation:

1. College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China

2. Department of Entomology, University of Kentucky, Lexington, KY 40546, USA

Abstract

Oogenesis in insects is a carefully orchestrated process, facilitating the formation of female gametes, which is regulated by multiple extrinsic and intrinsic factors, including ovary serine protease (Osp). As a member of the serine protease family, Osp is a homolog of Nudel, a maternally required protease defining embryonic dorsoventral polarity in Drosophila. In this study, we used CRISPR/Cas9-mediated mutagenesis to functionally characterize Osp in the Asian corn borer, Ostrinia furnacalis, a devastating maize pest throughout Asia and Australia. Building on previous knowledge, we hypothesized that knockout of Osp would disrupt embryonic development in O. furnacalis females. To examine this overarching hypothesis, we (1) cloned and characterized Osp from O. furnacalis, (2) designed target sites on exons 1 and 4 to construct a CRISPR/Cas9 mutagenesis system, and (3) documented phenotypic impacts among O. furnacalis Osp mutants. As a result, we (1) examined the temporal-spatial expression profiles of OfOsp, which has an open reading frame of 5648 bp in length and encodes a protein of 1873 amino acids; (2) established O. furnacalis Osp mutants; and (3) documented recessive, female-specific sterility among OfOspF mutants, including absent or deformed oviducts and reduced fertility in female but not male mutants. Overall, the combined results support our initial hypothesis that Osp is required for embryonic development, specifically ovarian maturation, in O. furnacalis females. Given its substantial impacts on female sterility, Osp provides a potential target for the Sterile Insect Technique (SIT) to manage Lepidoptera pests in general and the species complex Ostrinia in particular.

Funder

National Natural Science Foundation of China

Young Scholars’ Fund by Department of Education of Liaoning Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3