The Impact of Data on Structure-Based Binding Affinity Predictions Using Deep Neural Networks

Author:

Libouban Pierre-Yves1,Aci-Sèche Samia1ORCID,Gómez-Tamayo Jose Carlos2,Tresadern Gary2ORCID,Bonnet Pascal1ORCID

Affiliation:

1. Institute of Organic and Analytical Chemistry (ICOA), UMR7311, Université d’Orléans, CNRS, Pôle de Chimie rue de Chartres, 45067 Orléans, CEDEX 2, France

2. Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., B-2340 Beerse, Belgium

Abstract

Artificial intelligence (AI) has gained significant traction in the field of drug discovery, with deep learning (DL) algorithms playing a crucial role in predicting protein–ligand binding affinities. Despite advancements in neural network architectures, system representation, and training techniques, the performance of DL affinity prediction has reached a plateau, prompting the question of whether it is truly solved or if the current performance is overly optimistic and reliant on biased, easily predictable data. Like other DL-related problems, this issue seems to stem from the training and test sets used when building the models. In this work, we investigate the impact of several parameters related to the input data on the performance of neural network affinity prediction models. Notably, we identify the size of the binding pocket as a critical factor influencing the performance of our statistical models; furthermore, it is more important to train a model with as much data as possible than to restrict the training to only high-quality datasets. Finally, we also confirm the bias in the typically used current test sets. Therefore, several types of evaluation and benchmarking are required to understand models’ decision-making processes and accurately compare the performance of models.

Funder

JANSSEN

CHemBio

Techsab

RTR Motivhealth

Labex programs SYNORG

IRON

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3