Affiliation:
1. College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
Abstract
Pepper (Capsicum annuum L.) is sensitive to low temperatures, with low-temperature stress affecting its plant growth, yield, and quality. In this study, we analyzed the effects of exogenous hydrogen sulfide (H2S) on pepper seedlings subjected to low-temperature stress. Exogenous H2S increased the content of endogenous H2S and its synthetase activity, enhanced the antioxidant capacity of membrane lipids, and protected the integrity of the membrane system. Exogenous H2S also promoted the Calvin cycle to protect the integrity of photosynthetic organs; enhanced the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and photosynthesis; and reduced the intercellular CO2 concentration (Ci). Moreover, the activities of superoxide dismutase, peroxidase, catalase, and anti-cyclic glutathione (ASA-GSH) oxidase were improved to decompose excess reactive oxygen species (ROS), enhance the oxidative stress and detoxification ability of pepper seedlings, and improve the resistance to low-temperature chilling injury in ‘Long Yun2’ pepper seedlings. In addition, the H2S scavenger hypotaurine (HT) aggravated the ROS imbalance by reducing the endogenous H2S content, partially eliminating the beneficial effects of H2S on the oxidative stress and antioxidant defense system, indicating that H2S can effectively alleviate the damage of low temperature on pepper seedlings. The results of transcriptome analysis showed that H2S could induce the MAPK-signaling pathway and plant hormone signal transduction; upregulate the expression of transcription factors WRKY22 and PTI6; induce defense genes; and activate the ethylene and gibberellin synthesis receptors ERF1, GDI2, and DELLA, enhancing the resistance to low-temperature chilling injury of pepper seedlings. The plant–pathogen interaction was also significantly enriched, suggesting that exogenous H2S also promotes the expression of genes related to plant–pathogen interaction. The results of this study provide novel insights into the molecular mechanisms and genetic modifications of H2S that mitigate the hypothermic response.
Funder
post-expert project of the Sichuan Vegetable Innovation Team
“14th Five-Year” breeding project of Sichuan Science and Technology Department
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献