Unbiased Phosphoproteome Mining Reveals New Functional Sites of Metabolite-Derived PTMs Involved in MASLD Development

Author:

Moltó Eduardo1ORCID,Pintado Cristina1ORCID,Louzada Ruy Andrade2ORCID,Bernal-Mizrachi Ernesto2,Andrés Antonio3ORCID,Gallardo Nilda3ORCID,Bonzon-Kulichenko Elena1ORCID

Affiliation:

1. Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain

2. Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA

3. Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain

Abstract

Post-translational modifications (PTMs) of proteins are paramount in health and disease. Phosphoproteome analysis by enrichment techniques is becoming increasingly attractive for biomedical research. Recent findings show co-enrichment of other phosphate-containing biologically relevant PTMs, but these results were obtained by closed searches focused on the modifications sought. Open searches are a breakthrough in high-throughput PTM analysis (OS-PTM), identifying practically all PTMs detectable by mass spectrometry, even unknown ones, with their modified sites, in a hypothesis-free and deep manner. Here we reanalyze liver phosphoproteome by OS-PTM, demonstrating its extremely complex nature. We found extensive Lys glycerophosphorylations (pgK), as well as modification with glycerylphosphorylethanolamine on Glu (gpetE) and flavin mononucleotide on His (fmnH). The functionality of these metabolite-derived PTMs is demonstrated during metabolic dysfunction-associated steatotic liver disease (MASLD) development in mice. MASLD elicits specific alterations in pgK, epgE and fmnH in the liver, mainly on glycolytic enzymes and mitochondrial proteins, suggesting an increase in glycolysis and mitochondrial ATP production from the early insulin-resistant stages. Thus, we show new possible mechanisms based on metabolite-derived PTMs leading to intrahepatic lipid accumulation during MASLD development and reinforce phosphoproteome enrichment as a valuable tool with which to study the functional implications of a variety of low-abundant phosphate-containing PTMs in cell physiology.

Funder

Ministerio de Ciencia e Innovación

European Regional Development Fund

University of Castilla-La Mancha

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3