Experimental Study: Interleukin-31 Augments Morphine-Induced Antinociceptive Activity and Suppress Tolerance Development in Mice

Author:

Arai Iwao12ORCID,Tsuji Minoru1,Saito Saburo2,Takeda Hiroshi1

Affiliation:

1. Department of Pharmacology, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8510, Japan

2. Division of Environmental Allergy, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Tokyo 105-8461, Japan

Abstract

Morphine-induced antinociception is partially reduced in interleukin-31 (IL-31) receptor A (IL-31RA)-deficient mice, indicating that IL-31RA is crucial for morphine-induced peripheral antinociception. Herein, we examined the combined effects of IL-31 and morphine on the antinociceptive activity and itch-associated scratching behavior (LLS) in mice and elucidated the regulatory mechanisms. A hot-plate test was used to assess antinociception. LLS was automatically detected and recorded via a computer. IL-31RA mRNA expression was assessed using real-time polymerase chain reaction. Repeated pre-treatment with IL-31 resulted in significant antinociceptive activity. Repeated administration of morphine decreased the morphine-induced antinociceptive activity, LLS counts, and regular dose and inhibited IL-31-induced LLS. These results suggested that the repeated administration of morphine depleted inter-neuronal IL-31RA levels, preventing morphine-induced antinociception. Therefore, IL-31 may be helpful as an adjunct analgesic to morphine. To explore the benefits of IL-31, its influence on morphine-induced antinociceptive tolerance in mice was examined. An IL-31 and morphine combination increased the analgesic action, which increased the expression of DRG neuronal IL-31RA, elucidating the site of peripheral antinociception of morphine. This site may induce exocytosis of IL-31RA in the sensory nervous system. Collectively, the suppressive effect of IL-31 on morphine-induced antinociceptive tolerance may result from IL-31RA supplementation in sensory nerves.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3