The Intransitive Logic of Directed Cycles and Flipons Enhances the Evolution of Molecular Computers by Augmenting the Kolmogorov Complexity of Genomes

Author:

Herbert Alan1ORCID

Affiliation:

1. InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA

Abstract

Cell responses are usually viewed as transitive events with fixed inputs and outputs that are regulated by feedback loops. In contrast, directed cycles (DCs) have all nodes connected, and the flow is in a single direction. Consequently, DCs can regenerate themselves and implement intransitive logic. DCs are able to couple unrelated chemical reactions to each edge. The output depends upon which node is used as input. DCs can also undergo selection to minimize the loss of thermodynamic entropy while maximizing the gain of information entropy. The intransitive logic underlying DCs enhances their programmability and impacts their evolution. The natural selection of DCs favors the persistence, adaptability, and self-awareness of living organisms and does not depend solely on changes to coding sequences. Rather, the process can be RNA-directed. I use flipons, nucleic acid sequences that change conformation under physiological conditions, as a simple example and then describe more complex DCs. Flipons are often encoded by repeats and greatly increase the Kolmogorov complexity of genomes by adopting alternative structures. Other DCs allow cells to regenerate, recalibrate, reset, repair, and rewrite themselves, going far beyond the capabilities of current computational devices. Unlike Turing machines, cells are not designed to halt but rather to regenerate.

Funder

InsideOutBio

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3