Thermodynamics of Tower-Block Infernos: Effects of Water on Aluminum Fires

Author:

Maguire John F.,Woodcock Leslie V.

Abstract

We review the thermodynamics of combustion reactions involved in aluminum fires in the light of the spate of recent high-profile tower-block disasters, such as the Grenfell fire in London 2017, the Dubai fires between 2010 and 2016, and the fires and explosions that resulted in the 9/11 collapse of the World Trade Center twin towers in New York. These fires are class B, i.e., burning metallic materials, yet water was applied in all cases as an extinguisher. Here, we highlight the scientific thermochemical reasons why water should never be used on aluminum fires, not least because a mixture of aluminum and water is a highly exothermic fuel. When the plastic materials initially catch fire and burn with limited oxygen (O2 in air) to carbon (C), which is seen as an aerosol (black smoke) and black residue, the heat of the reaction melts the aluminum (Al) and increases its fluidity and volatility. Hence, this process also increases its reactivity, whence it rapidly reacts with the carbon product of polymer combustion to form aluminum carbide (Al4C3). The heat of formation of Al4Cl3 is so great that it becomes white-hot sparks that are similar to fireworks. At very high temperatures, both molten Al and Al4C3 aerosol react violently with water to give alumina fine dust aerosol (Al2O3) + hydrogen (H2) gas and methane (CH4) gas, respectively, with white smoke and residues. These highly inflammable gases, with low spontaneous combustion temperatures, instantaneously react with the oxygen in the air, accelerating the fire out of control. Adding water to an aluminum fire is similar to adding “rocket fuel” to the existing flames. A CO2–foam/powder extinguisher, as deployed in the aircraft industry against aluminum and plastic fires by smothering, is required to contain aluminum fires at an early stage. Automatic sprinkler extinguisher systems should not be installed in tower blocks that are at risk of aluminum fires.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference10 articles.

1. Types of Fires;Crippin,2015

2. Metallic Carbides

3. Design of Combat Vehicles for Fire Survivability;Zabel,1995

4. Defeat of Armored Vehicles by Use of Fire;Zabel,1990

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3