Rational Design of an Orthogonal Pair of Bimolecular RNase P Ribozymes through Heterologous Assembly of Their Modular Domains

Author:

Nozawa Yuri,Hagihara Megumi,Rahman Md Sohanur,Matsumura Shigeyoshi,Ikawa YoshiyaORCID

Abstract

The modular structural domains of multidomain RNA enzymes can often be dissected into separate domain RNAs and their noncovalent assembly can often reconstitute active enzymes. These properties are important to understand their basic characteristics and are useful for their application to RNA-based nanostructures. Bimolecular forms of bacterial RNase P ribozymes consisting of S-domain and C-domain RNAs are attractive as platforms for catalytic RNA nanostructures, but their S-domain/C-domain assembly was not optimized for this purpose. Through analysis and engineering of bimolecular forms of the two bacterial RNase P ribozymes, we constructed a chimeric ribozyme with improved catalytic ability and S-domain/C-domain assembly and developed a pair of bimolecular RNase P ribozymes the assembly of which was considerably orthogonal to each other.

Funder

Ministry of Education, Culture, Sports, Science and Technology

University of Toyama

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3