Role of Rhodopsins as Circadian Photoreceptors in the Drosophila melanogaster

Author:

Senthilan Pingkalai R.,Grebler Rudi,Reinhard Nils,Rieger Dirk,Helfrich-Förster CharlotteORCID

Abstract

Light profoundly affects the circadian clock and the activity levels of animals. Along with the systematic changes in intensity and spectral composition, over the 24-h day, light shows considerable irregular fluctuations (noise). Using light as the Zeitgeber for the circadian clock is, therefore, a complex task and this might explain why animals utilize multiple photoreceptors to entrain their circadian clock. The fruit fly Drosophila melanogaster possesses light-sensitive Cryptochrome and seven Rhodopsins that all contribute to light detection. We review the role of Rhodopsins in circadian entrainment, and of direct light-effects on the activity, with a special emphasis on the newly discovered Rhodopsin 7 (Rh7). We present evidence that Rhodopsin 6 in receptor cells 8 of the compound eyes, as well as in the extra retinal Hofbauer-Buchner eyelets, plays a major role in entraining the fly’s circadian clock with an appropriate phase-to-light–dark cycles. We discuss recent contradictory findings regarding Rhodopsin 7 and report original data that support its role in the compound eyes and in the brain. While Rhodopsin 7 in the brain appears to have a minor role in entrainment, in the compound eyes it seems crucial for fine-tuning light sensitivity to prevent overshooting responses to bright light.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference67 articles.

1. Twilight Times: Light and the Circadian System

2. The regulation of circadian clocks by light in fruitflies and mice

3. Circadian photoreception in the retinally degenerate mouse (rd/rd)

4. A Novel Human Opsin in the Inner Retina

5. Disease progression in patients with dominant retinitis pigmentosa and rhodopsin mutations;Berson;Investig. Ophthalmol. Vis. Sci.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3