Study of Random Walk Invariants for Spiro-Ring Network Based on Laplacian Matrices

Author:

Ahmad Yasir1ORCID,Ali Umar2,Otera Daniele Ettore3,Pan Xiang-Feng1

Affiliation:

1. School of Mathematical Sciences, Anhui University, Hefei 230601, China

2. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China

3. Institute of Data Science and Digital Technologies, Vilnius University, 08412 Vilnius, Lithuania

Abstract

The use of the global mean first-passage time (GMFPT) in random walks on networks has been widely explored in the field of statistical physics, both in theory and practical applications. The GMFPT is the estimated interval of time needed to reach a state j in a system from a starting state i. In contrast, there exists an intrinsic measure for a stochastic process, known as Kemeny’s constant, which is independent of the initial state. In the literature, it has been used as a measure of network efficiency. This article deals with a graph-spectrum-based method for finding both the GMFPT and Kemeny’s constant of random walks on spiro-ring networks (that are organic compounds with a particular graph structure). Furthermore, we calculate the Laplacian matrix for some specific spiro-ring networks using the decomposition theorem of Laplacian polynomials. Moreover, using the coefficients and roots of the resulting matrices, we establish some formulae for both GMFPT and Kemeny’s constant in these spiro-ring networks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3