IPAttributor: Cyber Attacker Attribution with Threat Intelligence-Enriched Intrusion Data

Author:

Xiang Xiayu1,Liu Hao2,Zeng Liyi1ORCID,Zhang Huan12,Gu Zhaoquan12

Affiliation:

1. Department of New Networks, Peng Cheng Laboratory, Shenzhen 518000, China

2. School of Computer Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China

Abstract

In the dynamic landscape of cyberspace, organizations face a myriad of coordinated advanced threats that challenge the traditional defense paradigm. Cyber Threat Intelligence (CTI) plays a crucial role, providing in-depth insights into adversary groups and enhancing the detection and neutralization of complex cyber attacks. However, attributing attacks poses significant challenges due to over-reliance on malware samples or network detection data alone, which falls short of comprehensively profiling attackers. This paper proposes an IPv4-based threat attribution model, IPAttributor, that improves attack characterization by merging a real-world network behavior dataset comprising 39,707 intrusion entries with commercial threat intelligence from three distinct sources, offering a more nuanced context. A total of 30 features were utilized from the enriched dataset for each IP to create a feature matrix to assess the similarities and linkage of associated IPs, and a dynamic weighted threat segmentation algorithm was employed to discern attacker communities. The experiments affirm the efficacy of our method in pinpointing attackers sharing a common origin, achieving the highest accuracy of 88.89%. Our study advances the relatively underexplored line of work of cyber attacker attribution, with a specific interest in IP-based attribution strategies, thereby enhancing the overall understanding of the attacker’s group regarding their capabilities and intentions.

Funder

National Natural Science Foundation of China

Major Key Project of PCL

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Cyber-Attacks and Identifying Perpetrators Using Machine Learning Techniques;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3