Joins, Secant Varieties and Their Associated Grassmannians

Author:

Ballico Edoardo1ORCID

Affiliation:

1. Department of Mathematics, University of Trento, 38123 Povo, TN, Italy

Abstract

We prove a strong theorem on the partial non-defectivity of secant varieties of embedded homogeneous varieties developing a general set-up for families of subvarieties of Grassmannians. We study this type of problem in the more general set-up of joins of embedded varieties. Joins are defined by taking a closure. We study the set obtained before making the closure (often called the open part of the join) and the set added after making the closure (called the boundary of the join). For a point q of the open part, we give conditions for the uniqueness of the set proving that q is in the open part.

Publisher

MDPI AG

Reference34 articles.

1. Varieties with an extremal number of degenerate higher secant varieties;J. Reine Angew. Math.,1988

2. Blomenhofer, A.T., and Casarotti, A. (2023). Nondefectivity of invariant secant varieties. arXiv.

3. Joins and higher secant varieties;Math. Scand.,1987

4. Hartshorne, R. (1977). Algebraic Geometry, Springer.

5. Cuspidal projections of space curves;Piene;Math. Ann.,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3