Neural Network-Based Distributed Consensus Tracking Control for Nonlinear Multi-Agent Systems with Mismatched and Matched Disturbances

Author:

Xu Linxi12,Qin Kaiyu12

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu 611731, China

Abstract

In practice, disturbances, including model uncertainties and unknown external disturbances, are always widely present and have a significant impact on the cooperative control performance of a networked multi-agent system. In this work, the distributed consensus tracking control problem for a class of multi-agent systems subject to matched and mismatched uncertainties is addressed. In particular, the dynamics of the leader agent are modeled with uncertain terms, i.e., the leader’s higher-order information, such as velocity and acceleration, is unknown to all followers. To solve this problem, a robust consensus tracking control scheme that combines a neural network-based distributed observer, a barrier function-based disturbance observer, and a tracking controller based on the back-stepping method was developed in this study. Firstly, a neural network-based distributed observer is designed, which is able to achieve effective estimation of leader information by all followers. Secondly, a tracking controller was designed utilizing the back-stepping technique, and the boundedness of the closed-loop error system was proved using the Lyapunov-like theorem, which enables the followers to effectively track the leader’s trajectory. Meanwhile, a barrier function-based disturbance observer is proposed, which achieves the effective estimation of matched and mismatched uncertainties of followers. Finally, the effectiveness of the robust consensus tracking control method designed in this study was verified through numerical simulations.

Funder

Natural Science Foundation of Sichuan Province

Sichuan Science and Technology Programs

Fundamental Research Funds for the Central Universities

Wuhu Science and Technology Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3