Most Probable Dynamics of the Single-Species with Allee Effect under Jump-Diffusion Noise

Author:

Abebe Almaz T.1ORCID,Yuan Shenglan2,Tesfay Daniel3,Brannan James4

Affiliation:

1. Department of Mathematics, College of Art and Science, Howard University, Washington, DC 20059, USA

2. Department of Mathematics, School of Sciences, Great Bay University, Dongguan 523000, China

3. Department of Mathematics, Mekelle University, Mekelle P.O. Box 231, Ethiopia

4. Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

Abstract

We explore the most probable phase portrait (MPPP) of a stochastic single-species model incorporating the Allee effect by utilizing the nonlocal Fokker–Planck equation (FPE). This stochastic model incorporates both non-Gaussian and Gaussian noise sources. It has three fixed points in the deterministic case. One is the unstable state, which lies between the two stable equilibria. Our primary focus is on elucidating the transition pathways from extinction to the upper stable state in this single-species model, particularly under the influence of jump-diffusion noise. This helps us to study the biological behavior of species. The identification of the most probable path relies on solving the nonlocal FPE tailored to the population dynamics of the single-species model. This enables us to pinpoint the corresponding maximum possible stable equilibrium state. Additionally, we derive the Onsager–Machlup function for the stochastic model and employ it to determine the corresponding most probable paths. Numerical simulations manifest three key insights: (i) when non-Gaussian noise is present in the system, the peak of the stationary density function aligns with the most probable stable equilibrium state; (ii) if the initial value rises from extinction to the upper stable state, then the most probable trajectory converges towards the maximally probable equilibrium state, situated approximately between 9 and 10; and (iii) the most probable paths exhibit a rapid ascent towards the stable state, then maintain a sustained near-constant level, gradually approaching the upper stable equilibrium as time goes on. These numerical findings pave the way for further experimental investigations aiming to deepen our comprehension of dynamical systems within the context of biological modeling.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3